If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=16H^2+45H+4
We move all terms to the left:
-(16H^2+45H+4)=0
We get rid of parentheses
-16H^2-45H-4=0
a = -16; b = -45; c = -4;
Δ = b2-4ac
Δ = -452-4·(-16)·(-4)
Δ = 1769
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-45)-\sqrt{1769}}{2*-16}=\frac{45-\sqrt{1769}}{-32} $$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-45)+\sqrt{1769}}{2*-16}=\frac{45+\sqrt{1769}}{-32} $
| (7x+13)+(10x-44)=180 | | 0.20(y−9)+0.16y=0.18y−0.9 | | 4(X-1)=6(x+9) | | 2x3=4x2 | | -90x+60=1 | | 5.8=x6 | | 110=x-(.2)x | | 180=2x^2 | | -3b+5=7+10b | | 0.8y-0.4+0.18y=0.16y-0.1 | | Nx3+8=35 | | 2x^{5}-14x^{3}+24x=0 | | 180=x-(.2)x | | -2(-3a-8)=1 | | 4(8−2d)= | | 12x-4+11x=90 | | 4n+20=12 | | (5y+35)+14=180 | | (5y+35)=14 | | 5m-12=29 | | 2x-1÷3x+1=0 | | 23=12+p | | X.2/3x-14=16 | | 3.2d-5=5-1.8d | | 7x=26+2x | | (x+40)+(3x+20)=180 | | 3x2–36x=-105 | | (x+40)+(3x+20)=90 | | 11x+12x-4=90 | | 6x(8x+6)=6x-45 | | x+3x+9 =x+4x+7 | | 23/5x=9/15 |